
solXEN 420 miner v.1.1 
This guide will install rust, solana, create and fund wallets on solana testnet and then run 420miner to find 420 hashes.  
This is early iteration, everything will change, big boy pants don’t be nude 
 
get a server mr hashhead, and enter matrix 
 
Install rust 
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y 
 
Install solana (tools t run things) 
sh -c "$(curl -sSfL https://release.solana.com/stable/install)" 
 
Run export 
 export PATH="/home/ubuntu/.local/share/solana/install/active_release/bin:$PATH" 
 
Check solana installed   
solana --version 
 
Create new wallet 
solana-keygen new 
 
Create pass-phrase or not is also fine 
 
Output: 
BIP39 Passphrase (empty for none):  
 
Wrote new keypair to /home/ubuntu/.config/solana/id.json 
========================================================================== 
pubkey: WILL DISPLAY HERE 
========================================================================== 
Save this seed phrase and your BIP39 passphrase to recover your new keypair: 
chat follow region rain tide sweet robot embrace cage shop message deposit 
 
Connect to testnet 
solana config set --url https://api.testnet.solana.com 
 
solana airdrop 1 
#gives you 1 SOL  
 
solana balance  
#(should have 1 SOL on testnet 
 
 
 
Setup another wallet (to run test with multiple wallets) 
cp  /home/ubuntu/.config/solana/id.json /home/ubuntu/.config/solana/id1.json 
#This is a private key we’re copying and putting different file 
 
solana-keygen new --force 
#creates another wallet 
 
solana balance 
#Should be zero there 
 
solana airdrop 1 
#give you 1 SOL in wallet2 
 
solana balance 
#Should be 1 SOL there 
 
Copy wallet to new location 
cp  /home/ubuntu/.config/solana/id.json /home/ubuntu/.config/solana/id2.json 
#now we have backups on 2 different files. Now we have 2 funded wallets 
 
Create cargo project 
cargo new my_project 
#Should work if doenst path is not setup, then do this: 

https://api.testnet.solana.com/


 
Setup path 
source ~/.bashrc 
 
 
cargo new my_project 
 
cd my_project 
 
nano Cargo.toml 
 
Add these dependencies: 
[dependencies] 
solana-client = "1.10" 
solana-sdk = "1.10" 
 
#Copy save (ctrl X on mac) 
 

Run program 
#Copy this code 
https://gist.github.com/jacklevin74/b3b3709aa3e66eab8f762c0fb4de53ff 
 
Put in file under src main 
nano src/main.rs 
#Remove stuff there and paste code from link 
#Ctrl X (save) 
 
Build client into byte code that will execute from command line 
cargo build 
 
If error install cc compilers that rust is using 
sudo apt install gcc 
 
Retry cargo build 
cargo build 
#Should get no errors. If still errors youre ngmi jk 
 
Go to this page: 
https://explorer.solana.com/address/7R2KMCUW1GimTEiS8tp8jJrde2N66yQiJ1MEUTbaPgfq?cluster=testnet 
#s.c. on their testnet 
You havent run client yet, but will now 
 
Run client ( 
cargo run 
 

Go back to page and check your tx’s 
https://explorer.solana.com/address/7R2KMCUW1GimTEiS8tp8jJrde2N66yQiJ1MEUTbaPgfq?cluster=testnet 
#Should get tx’s 
#Scheduler pus you in a 2 different threads since you had 2 accounts 
 
Find your address 
solana adress 
 
paste address to see your tx’s 
h1ps://explorer.solana.com/address/EFPqkTNmMsVFVCEzgrWrhmXQzq1LiRsbJ6JG7CSYPVMR?cluster=testnet 
 
click on the top tx for example 
h1ps://explorer.solana.com/tx/28HmNepZCUxGbqjRvdZb3ccJp4DK6zuevtL8YsRC75RS2AjdRmJDue6awXiEkHCi1WrtvmtFwaGD6V2xgTWVp1?cl
uster=testnet 
 
 

https://gist.github.com/jacklevin74/b3b3709aa3e66eab8f762c0fb4de53ff
http://main.rs/
https://explorer.solana.com/tx/28HmNepZCUxGbqjRvdtib3ccJp4DK6zuevtL8YsRC75RS2AjdRmJDue6awXiEkHCi1WrtvmtFwaGD6V2xgTWVptt?cluster=testnet
https://explorer.solana.com/tx/28HmNepZCUxGbqjRvdtib3ccJp4DK6zuevtL8YsRC75RS2AjdRmJDue6awXiEkHCi1WrtvmtFwaGD6V2xgTWVptt?cluster=testnet


 
 
Found 1 hash at hash number 40 
We’re generaZng 10 hashes and were searching each one. When 40th was generated we found it – a 420 hash 
 
 
 
 

 
Here I found 2 420 hashes. How degen of me 
 

 

 

 



 

 

See fee paid and compute units consumed 
its over 1M CU. Im sending 10tx per wallet. 2 wallets = 20tx.  
Compute units: 1,14M x 20 = 23M CU = almost half a block. 
A full block = 48M CU.  
If you create 4 wallets you could take over the whole block.  

Every tx = 1,14M CU.  
48M / 1,14M = 42 tx. With 42 tx you can take over the whole block.  

 

Outcomes: 
you can find 0 hashes, 1 hash or multiple hashes.  

 

 

 

 



 

Second row in green you can see how much the tx cost.  
In terminal: 
solana balance 

 

See how my balance matches what it says in the explorer.  
also note the 20tx’s since I had 2 wallet generating 10 tx each, after cargo run 

I had 2 accounts so Im hifng 2 out 4 threads 



 
If 100 ppl are hifng block - all 4 threads will be used. Scheduler will allocate where space is available.  
If 1 have 4 accounts and I pay most priority fees I can occupy all 4 threads. Rest of 99 ppl will get failed and pay a li1le bit.  

420 hash –> solXEN 
we will create a formula in the direction of: 
n * 420hash = n * AMP solXEN, 

Where AMP starts at 300 and reduces every 100.000 blocks.  
since there 216.000 blocks in 24h given that every block is 400ms, AMP will be reduced to 1 in 139 days.  

 

XN 
before mining you will later enter you ETH address. We then create an indexer to match your found hashes to your ETH address, create a 
leaderboard ala xenblocks and keep track of which ETH address has accumulated how ever many 420hashes and solXEN. Xn can later be 
airdropped fairly participants based on their found hashes. Rewarding miner.  

 

Next step: priority fees 
to be implemented is to be able to specify priority fees so you can compete with how ever much you want in order to be selected by the leader. 
That’s how we can create a fair auction for blockspace on Solana.  

 

WTH is actually happening here? 
just like youre deploying the miner script to look for XEN11 hashes with xenblocks – youre now instead sending a program to the leader (solana 
validator that according to the leader schedule has been selected to verify tx’s and construct a block) to hash for you and run the 420miner script. 
The leader finds a 420 hash. The other 3,000 validators will also run the program and in doing so verify that the leaders found solution (420 hash) is 
correct.  

With xenblcoks a key is generated with argon2. You then hash to find the XEN11 solution that will match the corresponding key. Here the slot 
number is the key and the hash that the leader finds corresponds to that slot number. The other validators can then run the same script and thus 
verify that the slotnumber matches with the same 420 hash. The whole validator cluster will have to run the 420 hashing compute. Then they vote 
and see that the leaders found solution is the right has for the key(slot number). 

Instead of argon2 we here use the cryptographic hashing algorithm sha3.  
below chart is extremely rough and has flaws but im late for dinner 

 

 

 

 

 

 

 

 

 


